AN $s p^{2}$ YLIDE CARBON-TO-METAL BONDING: X-RAY MOLECULAR STRUCTURE OF
 $\left.\mid \mathrm{Pt}^{\mathrm{II}}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NC}_{(\mathrm{O}}\right) \mathrm{CNC}_{5} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{2}-\mathbf{3}, 5\right) \mid \mathrm{ClO}_{4}-\mathbf{2 H} \mathrm{H}_{2} \mathrm{O}$

GEN-ETSU MATSUBAYASII *. KOSUKE UEYAMA.
Deparment of Apphed Chemistry: Faculty of Engineering. Osaka Unitersity. Yamadaoka, Suita. Oxaka in. 5 (Japan)
and KAZUMI NAKATSU
Department of Chemistry: Factaty of Science. Kuanvei Gakuin University: Ucgahura. Vishinomilar. Hrogo 66? (Japan)
(Received April 26th. 1982: in revised form June 1st. 1982)

Summary

An X-ray structure analysis for the title complex obtained by the reaction of $\mathrm{Pt}^{\prime \prime} \mathrm{Cl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NC}(\mathrm{O}) \overline{\mathrm{C}} \mathrm{HNC}_{5}^{+} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{2}-3.5\right)$ with ethylenediamine in water has revealed the presence of an ylide carbon atom which is coordinated to the platinum(II) ion with an $s p^{2}$ configuration.

Ylide carbon atoms are well known to bond with metal ions forming a four-coordinate configuration. However, the bonding scheme that the ylide carbon atom ligating metal ions is three-coordinate has been reported only for limited phosphorus ylide-metal complexes [1-4]. Substituted pyridinium phenacylides and 2-pyridylcarbonylmethylides react with dichlorobis(dimethylsulfide)platinum(II) to form complexes having the ylide carbon-to-metal bond [5.6]. Elimination of ylide protons from platinum(II)-ylide complexes I is expected to afford a new type of ylide-metal complexes in which ylide carbon atoms atiached to platinum are threc-coordinate (eq. 1).

To a suspension of dichloro(3.5-dimethylpyridinium 2-pyridylcarbonylmethylide) platinum(II) [6] (0.14 g .0 .28 mmol) in water ($20 \mathrm{~cm}^{3}$) was added ethylenediamine $(0.13 \mathrm{~g}, 2.2 \mathrm{mmol})$ and the mixture stirred for 1 h . The solids were dissolved, the solution turning red. After addition of $\mathrm{NaClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(0.062 \mathrm{~g} .0 .44 \mathrm{mmol})$ the solution was concentrated to 50% of the volume under reduced pressure and heating (ca. $40^{\circ} \mathrm{C}$). It was allowed to stand overnight to give red needles (0.070 g). This compound was formulated as $\left[\mathrm{Pt}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NC}(\mathrm{O}) \mathrm{CNC}_{5} \mathrm{H}_{3}-\right.\right.$ $\left.\left.\left(\mathrm{CH}_{3}\right)_{2}-3.5\right)\right] \mathrm{ClO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (II) on the basis of elemental analysis and spectroscopic characterization. In order to decide on the configuration of the three-coordinate ylide carbon attached to the metal ion. we have determined the crystal and molecular structure of II by X-ray diffraction.

Red needles of II crystallized in the monoclinic space group $P 2_{1} / n: a$ 19.032(3). b $7.923(1), c 14.590(2) A: \beta=102.31(1)^{\circ}: V 2149.6(5) \dot{A}^{3}: Z=4 . D_{c} 1.903(5) \mathrm{g} \mathrm{cm}^{-3}$. D_{n} (flotation) $1.91 \mathrm{~g} \mathrm{~cm}^{-3}$. Intensity data were collected on a computer-controlled diffractometer using graphite-monochromatized Mo- K_{a} radiation. The structure was solved by the heavy-atom method and refined by the block-diagonal least-squares procedure to a current conventional R value of 5.2% for 3301 observed reflections ($\left|F_{0}\right|>3 \sigma(F)$). Anisotropic thermal vibrations were assumed for the non-hydrogen atoms. The hydrogen atoms were not included in the refinement.

Fig. 1. View of the molecular structure of the cation moiety $\left[\mathrm{Pt}_{(}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NC}(\mathrm{O})\right.\right.$ $\left.\left.\mathrm{CNC}_{5} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{2}-3.5\right)\right]^{+}$- ORTEP drawing [11] with 20% probability ellipsoids. Bond lengths (A) are shown with es.d.'s in parentheses. Relevant bond angles (${ }^{\circ}$) are: $\mathrm{N}(1)-\mathrm{Pt}-\mathrm{C}(7) .80 .0(5): \mathrm{N}(1)-\mathrm{Pt}-\mathrm{N}(3)$. 97.5(4): $\mathrm{N}(3)-\mathrm{Pt}-\mathrm{N}(4) .82 .1(4)$: $\mathrm{N}(4)-\mathrm{Pt}-\mathrm{C}(7), 100.4(5) ; \mathrm{Pt}-\mathrm{N}(1)-\mathrm{C}(5), 115.4(9) ; \mathrm{Pt}-\mathrm{C}(7)-\mathrm{C}(6), 117.4(9)$; $\mathrm{Pt}-\mathrm{C}(7)-\mathrm{N}(2), 126.0(8) ; \mathrm{Pt}-\mathrm{N}(3)-\mathrm{C}(16), 109.0(8): \mathrm{Pt}-\mathrm{N}(4)-\mathrm{C}(15), 109.3(9): \mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(6), 116.7(10)$; $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(1) .118 .5(12) ; \mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7), 112.3(10): C(7)-\mathrm{C}(6)-\mathrm{O}(1), 129.3(12)$.

The crystal structure consists of discrete cation moieties (Fig. 1) and perchlorate ions including two water molecules of crystallization. No unusual intermolecular contact was found. The platinum atom assumes a square-planar geometry with $\mathrm{N}(1)$. $N(3) . N(4)$, and $C(7)$ within $\pm 0.04 \AA . \mathrm{Pt}, N(2), C(7), C(6)$, and $O(1)$ are also coplanar within $\pm 0.01 \AA$: the ylide carbon atom. $C(7)$. coordinated to platinum adopts an $s p^{2}$ configuration. This mode of ylide-metal attachment is the first example for nitrogen ylide-metal complexes. although only limited phosphorus ylide-metal complexes [3.4] containing three-coordinate ylide carbon atoms were well characterized by X-ray crystallographic studies.

The $\mathrm{Pt} C(7)$ distance $(2.00(1) \dot{\Lambda})$ is close to $\mathrm{Pt}-\mathrm{C}\left(s p^{2}\right.$ and carbenoid) (2.13-1.95 A) [7.8]. The present complex does not show a remarkable shortening of the ylide-metal bond found in $\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{ClZrCHPC}_{6} \mathrm{H}_{5}\right)$; [3] and ($\eta^{5}-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{UCHP}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$ [4]. Delocalization of electrons on the ylide carbon atom to the carbonyl group seems to cause the lengthening of $\mathrm{C}(6)-\mathrm{O}(1)$ (1.30 (1) A) and rather short $C(6)-C(7)$ distances ($1.39(2) \AA$). This is similar for 2-pyridyl-carbonylmethylide-metal complexes [9.10] in which coordination through the pyridyl nitrogen and carbonyl oxygen atoms is assumed. The 3.5-dimethylpyridinium ring is twisted by 47° from the $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{Pt}$ plane. which can be explained by steric hindrance between the C(12)-hydrogen and $N(4)$-hydrogen atoms. Moreover. this steric repulsion seems to cause the significantly large bond angle of $\mathrm{Pt}-\mathrm{C}(7)-\mathrm{N}(2)$ (126.0(8) $)^{\circ}$ compared with that of $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(2)\left(116.7(10)^{\circ}\right)$.

References

1 W.C. Kaska. D.K. Mitchell. R.F. Reichelderfer. and W.D. Korte. J. Am. Chem. Soc., 96 (1974) 2847.
2 H. Schmidhaur and W. Tronich. Chem. Ber.. 100 (1967) 1032: 101 (1968) 3545.
3 J.C. Baldwin. N.L. Keder. C.E. Strouse. and W.C. Kaska. Z. Naturforsch.. B. 35 (19S0) 12S9.
4 R.E. Cramer. R.B. Mayland. J.C. Paw. and J.W. Glije. J. Am. Chem. Soc.. 103 (1981) 3589.
5 H. Koezuka, G. Matsubayashi, and T. Tanaka, Inorg. Chem.. 13 (1974) 443: 15 (1976) 417.
6 G. Matsubayashi and Y. Kondo. J. Organometal. Chem.. 219 (1981) 269.
7 L. Manojlovic-Muir and K.W. Muir. J. Chem. Soc. Dalton. (1974) 2427 and ref. therein.
S E.M. Badley, K.W. Muir, and G.A. Sim. J. Chem. Soc.. Dalton. (1976) 1930.
9 Tetracarhonyl(dimethylsulfonium ?-pyridylcarbonylmethylide)tungsten(0): $\mathrm{C}-\mathrm{O}$ (1.277(9) A) of the Vlide carbonyl group and C-C (1.37(1) A) adjacent to the carbonyl group. G. Matsubayashi. I. Kawafune, T. Tanaka. S. Nishigaki, and K. Nakatsu. J. Organometal. Chem.. 187 (1980) 113.
10 (1.5-Cyclooctadiene)(4-methylpyridinium 2-pyridycarbonyImethylide)rhodiuma(1) perchlorate: ©-O ($1.306(9) \dot{A}$) of the carbonyl group and $C-C(1.35(1) A)$ adjacent to the carbonyl group. G. Matsubayashi, unpublished results.
11 C.K. Johnson. ORTEP-II. Report ORNL 5138. Oak Ridge National Laburatory. Tennesiec. 1976.

